Research

My research focuses on developing computational techniques for Bayesian spatial modeling. However, I am also is interested in numerical methods (within a deterministic approach) for spatial interpolation purposes.

In Progress

  • Cavieres, J., Monnahan, C.C., Bolin., D, 2025. Approximated Gaussian random field: effects of parameterization on MCMC sampling.

Preprints

Journal Publications

Conferences & Workshops

  • Cavieres, J., Monnahan, C.C., Bolin, D., Bergherr, E., 2024. Approximated Gaussian random field under different parameterizations for MCMC. International Workshop on Statistical Modelling 2024, Durham, England.

  • Cavieres, J., Moraga, P., Monnahan, C.C., 2023. Bayesian semiparametric spatial model using Template Model Builder (). CFE-CMStatistics Conference 2023, Berlin, Germany.

  • Cavieres, J., Monnahan, C.C., Moraga, P., 2023.A semiparametric thin plate spline spatial model using Bayesian computation. Statistical Computing 2023, Günzburg, Germany.

  • Cure, M., Arcos, C., Araya, I., Escarate, P., Celedon, L., Cavieres, J., Pezoa, R., Olivares, E., Farias, G., 2022. Bayesian deconvolution of a rotating spectral line profile to a non-rotating one. XXXI General Assembly of international Astronomical Union, Busan, Republic of Korea.

  • Cavieres, J., 2021. Combining all the pieces together to create an efficient full Bayesian geostatistical model: The SPDE method in . 2do Workshop de Estadística: Contribuciones de Posgrado. Sociedad Chilena de Estatística (SOCHE).

  • Cavieres, J., Moraga, P., 2021. Fitting spatial random field models using and the SPDE approach: implementation via and a comparative study of two different parametrizations. End-to-end Bayesian learning, Marseille, France.

  • Cavieres, J., 2019. Incorporating the spatial dependence with physical barriers in a bayesian spatio-temporal model to obtain a relative index of abundance. StanCon2019, Cambridge, England.

  • Plaza, F., Cavieres, J., Salas, R., Nicolis, O., 2018. Deep learning approach for seismic risk assessment in Chile. XIV IEEE Latin American Summer School in Computational Intelligence.

  • Cavieres, J., Nicolis, O. 2016. Bayesian spatio-temporal modelling for analyzing the sea urchin (Loxechinus albus) fishery in Chile. COBAL V (Congreso de Estadística Bayesiana de America Latina) , Guanajuato, México.